全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
924 0
2017-10-28
摘要:将数据对象间的关联限制与K-means算法结合可以取得较好的效果,但由于划分是由K个中心决定的,每一类仅由一个中心决定,分隔的表示方法限制了算法效果的进一步提高.基于数据对象间的两类限制,定义了数据对象和集合间的两类关联,以及集合间的3类关联,在此基础上给出了结合限制的分隔模型.在模型中,基于集合间的正关联,多个子集中心可以用来表示同一类,使划分的表示可以更为灵活、精细.基于此模型,给出了相应的算法CKS(constrainedK-meanswith subsets)来生成结合限制的分隔.对3个UCI数据集的实验结果显示:在准确率及健壮性上,CKS显著优于另一个结合关联限制的K-means类算法COP-K-means,与另一个代表性的算法CCL相比,也有相当优势;在时间代价上,CKS也有一定优势.

原文链接:http://www.cqvip.com//QK/96857X/200505/15677486.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群