摘要:在数据挖掘以及
机器学习等领域,都需要涉及一个数据预处理过程,以消除数据中所包含的错误、噪声、不一致数据或缺失值。其中,缺失值的填充是一个非常具有挑战性的任务,因为填充效果的好坏会极大的影响学习算法及挖掘算法的后续处理过程。目前已有的一些填充算法,如基于粗糙集的和基于最近邻法的算法等,在一定程度上能够处理缺失值问题。与以上方法不同,提出了一种扩展的基于信息增益的缺失值填充算法,它充分利用数据集中各属性之间隐含的关系对缺失的数据进行填充。大量的实验表明,提出的扩展的基于信息增益的缺失值填充算法是有效的。
原文链接:http://www.cqvip.com//QK/95033X/200624/23569718.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)