经管之家App
让优质教育人人可得
立即打开
全部版块
我的主页
›
论坛
›
经济学人 二区
›
学术资源/课程/会议/讲座
›
国内外文献账号区
Stochastic Claims Reserving Methods in Insurance---Wüthrich
楼主
rasch_modle
1798
3
收藏
2017-11-13
悬赏
5
个论坛币
未解决
1 Introduction and Notation 1
1.1 Claims process 1
1.1.1 Accounting principles and accident years 2
1.1.2 Inflation 3
1.2 Structural framework to the claims-reserving problem 5
1.2.1 Fundamental properties of the claims reserving process 7
1.2.2 Known and unknown claims 9
1.3 Outstanding loss liabilities, classical notation 10
1.4 General remarks 12
2 Basic Methods 15
2.1 Chain-ladder method (distribution-free) 15
2.2 Bornhuetter–Ferguson method 21
2.3 Number of IBNyR claims, Poisson model 25
2.4 Poisson derivation of the CL algorithm 27
3 Chain-Ladder Models 33
3.1 Mean square error of prediction 33
3.2 Chain-ladder method 36
3.2.1 Mack model (distribution-free CL model) 37
3.2.2 Conditional process variance 41
3.2.3 Estimation error for single accident years 44
3.2.4 Conditional MSEP, aggregated accident years 55
3.3 Bounds in the unconditional approach 58
3.3.1 Results and interpretation 58
3.3.2 Aggregation of accident years 63
3.3.3 Proof of Theorems 3.17, 3.18 and 3.20 64
3.4 Analysis of error terms in the CL method 70
3.4.1 Classical CL model 70
3.4.2 Enhanced CL model 71
3.4.3 Interpretation 72
viii Contents
3.4.4 CL estimator in the enhanced model 73
3.4.5 Conditional process and parameter prediction errors 74
3.4.6 CL factors and parameter estimation error 75
3.4.7 Parameter estimation 81
4 Bayesian Models 91
4.1 Benktander–Hovinen method and Cape–Cod model 91
4.1.1 Benktander–Hovinen method 92
4.1.2 Cape–Cod model 95
4.2 Credible claims reserving methods 98
4.2.1 Minimizing quadratic loss functions 98
4.2.2 Distributional examples to credible claims reserving 101
4.2.3 Log-normal/Log-normal model 105
4.3 Exact Bayesian models 113
4.3.1 Overdispersed Poisson model with gamma prior distribution 114
4.3.2 Exponential dispersion family with its associated conjugates 122
4.4 Markov chain Monte Carlo methods 131
4.5 Bühlmann–Straub credibility model 145
4.6 Multidimensional credibility models 154
4.6.1 Hachemeister regression model 155
4.6.2 Other credibility models 159
4.7 Kalman filter 160
5 Distributional Models 167
5.1 Log-normal model for cumulative claims 167
5.1.1 Known variances
2
j
170
5.1.2 Unknown variances 177
5.2 Incremental claims 182
5.2.1 (Overdispersed) Poisson model 182
5.2.2 Negative-Binomial model 183
5.2.3 Log-normal model for incremental claims 185
5.2.4 Gamma model 186
5.2.5 Tweedie’s compound Poisson model 188
5.2.6 Wright’s model 199
6 Generalized Linear Models 201
6.1 Maximum likelihood estimators 201
6.2 Generalized linear models framework 203
6.3 Exponential dispersion family 205
6.4 Parameter estimation in the EDF 208
6.4.1 MLE for the EDF 208
6.4.2 Fisher’s scoring method 210
6.4.3 Mean square error of prediction 214
6.5 Other GLM models 223
6.6 Bornhuetter–Ferguson method, revisited 223
6.6.1 MSEP in the BF method, single accident year 226
6.6.2 MSEP in the BF method, aggregated accident years 230
Contents ix
7 Bootstrap Methods 233
7.1 Introduction 233
7.1.1 Efron’s non-parametric bootstrap 234
7.1.2 Parametric bootstrap 236
7.2 Log-normal model for cumulative sizes 237
7.3 Generalized linear models 242
7.4 Chain-ladder method 244
7.4.1 Approach 1: Unconditional estimation error 246
7.4.2 Approach 3: Conditional estimation error 247
7.5 Mathematical thoughts about bootstrapping methods 248
7.6 Synchronous bootstrapping of seemingly unrelated
regressions 253
8 Multivariate Reserving Methods 257
8.1 General multivariate framework 257
8.2 Multivariate chain-ladder method 259
8.2.1 Multivariate CL model 259
8.2.2 Conditional process variance 264
8.2.3 Conditional estimation error for single accident years 265
8.2.4 Conditional MSEP, aggregated accident years 272
8.2.5 Parameter estimation 274
8.3 Multivariate additive loss reserving method 288
8.3.1 Multivariate additive loss reserving model 288
8.3.2 Conditional process variance 295
8.3.3 Conditional estimation error for single accident
years 295
8.3.4 Conditional MSEP, aggregated accident years 297
8.3.5 Parameter estimation 299
8.4 Combined Multivariate CL and ALR method 308
8.4.1 Combined CL and ALR method: the model 308
8.4.2 Conditional cross process variance 313
8.4.3 Conditional cross estimation error for single accident
years 315
8.4.4 Conditional MSEP, aggregated accident years 319
8.4.5 Parameter estimation 321
9 Selected Topics I: Chain-Ladder Methods 331
9.1 Munich chain-ladder 331
9.1.1 The Munich chain-ladder model 333
9.1.2 Credibility approach to the MCL method 335
9.1.3 MCL Parameter estimation 340
9.2 CL Reserving: A Bayesian inference model 346
9.2.1 Prediction of the ultimate claim 351
9.2.2 Likelihood function and posterior distribution 351
9.2.3 Mean square error of prediction 354
9.2.4 Credibility chain-ladder 359
9.2.5 Examples 361
9.2.6 Markov chain Monte Carlo methods 364
x Contents
10 Selected Topics II: Individual Claims Development Processes 369
10.1 Modelling claims development processes for individual claims 369
10.1.1 Modelling framework 370
10.1.2 Claims reserving categories 376
10.2 Separating IBNeR and IBNyR claims 379
11 Statistical Diagnostics 391
11.1 Testing age-to-age factors 391
11.1.1 Model choice 394
11.1.2 Age-to-age factors 396
11.1.3 Homogeneity in time and distributional assumptions 398
11.1.4 Correlations 399
11.1.5 Diagonal effects 401
11.2 Non-parametric smoothing 401
Appendix A: Distributions 405
A.1 Discrete distributions 405
A.1.1 Binomial distribution 405
A.1.2 Poisson distribution 405
A.1.3 Negative-Binomial distribution 405
A.2 Continuous distributions 406
A.2.1 Uniform distribution 406
A.2.2 Normal distribution 406
A.2.3 Log-normal distribution 407
A.2.4 Gamma distribution 407
A.2.5 Beta distribution 408
Bibliography 409
Index 417
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
全部回复
沙发
rasch_modle
2017-11-13 18:26:55
{:2_29:}
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
藤椅
luochuanyong
2018-3-13 18:29:46
下载链接
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
板凳
rasch_modle
2018-4-22 17:02:35
luochuanyong 发表于 2018-3-13 18:29
下载链接
https://bbs.pinggu.org/thread-6073974-1-1.html
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
相关推荐
stochastic control in insurance
stochastic control in insurance
求书《Stochastic Claims Reserving Methods in Insurance》
求助:Stochastic Claims Reserving Methods in Insurance
求一篇文章:Stochastic Claims Reserving in General Insurance
Stochastic Models in Life Insurance
STOCHASTIC CHOICE IN INSURANCE AND RISK SHARING
应赏 - Stochastic Claims Reserving Methods in Insurance
Applied Stochastic Models and Control for Finance and Insurance
book Stochastic Models in Life Insurance
栏目导航
国内外文献账号区
爱问频道
外文文献专区
经管高考
经管文库(原现金交易版)
金融实务版
热门文章
CDA 数据分析师:统计制图实战指南 —— 让 ...
视频媒体:AI漫剧爆发在即,重视产业链机遇
量子科技行业深度报告:量子革命:量子科技 ...
俄语–英语双语图解词典
这简单的几句话,完成了对传统和现代经济学 ...
2025年度国产AI芯片产业白皮书
2021 & 2022年全国农产品成本收益资料汇编 ...
2010-2024年《全国农产品成本收益资料汇编》 ...
法语–英语双语图解词典
德语–英语双语图解词典
推荐文章
AI狂潮席卷学术圈,不会编程也能打造专属智 ...
10月重磅来袭|《打造Coze/Dify专属学术智能 ...
最快1年拿证,学费不足5W!热门美国人工智能 ...
关于如何利用文献的若干建议
关于学术研究和论文发表的一些建议
关于科研中如何学习基础知识的一些建议 (一 ...
一个自编的经济学建模小案例 --写给授课本科 ...
AI智能体赋能教学改革: 全国AI教育教学应用 ...
2025中国AIoT产业全景图谱报告-406页
关于文献求助的一些建议
说点什么
分享
微信
QQ空间
QQ
微博
扫码加好友,拉您进群
各岗位、行业、专业交流群