比较三学科与多学科(表3的三学科和表1的多学科)的前10个主题词可以发现,除了共同关注的如创新、绩效和知识以外,三学科更加关注工作、科学、政治、网络、系统,而多学科更加关注厂商、模式、管理、信息技术等。三学科更加关注与组织参与者相关的细分主题。在统计量上,三学科主题词出现次数的差异更小,主题词的分布更加分散。主题词出现次数的均值更小,为1.59次;方差也更小,为11.37;中位数、25%分位数、75%分位数均为1次;前10个主题词的累计频次占比为18%。三学科主题词分布也满足齐普夫定律。对数化以后的回归相关系数高达0.8232。回归方程为y=1.4091-0.4645x,即三学科主题词出现的衰减幂次为-0.4645,既没有多学科衰减得快,也没有多学科运用权数之后衰减得快。
三学科呈现的主题词结构和分布变化说明:第一,三学科对管理学的主题如厂商、管理、模式等没有关注。第二,三学科对技术与组织相关主题的探讨更分散,几乎没有集中的主题。第三,这些主题词的变化显示其更多地关注与组织人群相关的细分主题,也是其与多学科的本质差异。三学科对工作、科学、政治、网络、系统等的关注是对社会被正式组织吸纳(Perrow,1991)的回应,是在绩效为王的时代保持的一份清醒。
在检索收敛到只剩社会学的第四份数据中,获得的记录为201个,有效记录176个,空记录数25个(部分文献没有记录主题词)。主题词总数873个,出现次数总计1415次。其中,仅出现1次的主题词691个,占总数的79.2%,离散性远高于三学科。出现次数由高到低降序排列的前10个主题词参见表3。与表1的多学科比较,社会学的主题词与组织人群相关,如工作、科学、嵌入性等。与表3的三学科比较,两者前三个主题词的排序完全一样,不一样的是社会学更多地关注嵌入性和社会学,三学科则关注创新、绩效等。
基本统计量显示社会学的细分主题进一步分散。主题词出现次数的均值为1.62次,方差为7.94次,中位数、25%分位数、75%分位数也都为1次;前10个主题词的累计频次占比为14.6%。在总体上也呈现幂律分布,满足齐普夫定律。以齐普夫函数拟合,回归系数为0.8396;回归方程为y=1.3219-0.4873x,主题词出现次数的幂次等于-0.4873,与三学科相比衰减略快,却远慢于多学科(-0.7759)。
综合社会学主题词的多个参数可以看到,三学科与社会学在细分主题上具有同构性,不同之处在于社会学更加关注知识,与人群的关系更密切;三学科则更关注创新,与组织(organizing)的关系更加密切。需注意的是:第一,社会学更关注社会性议题,如嵌入性和社会关系网络。第二,“社会学”也是主题词,意味着社会学研究更多地以学科标签而不是细分主题宣示与其他学科的区分。
为探索三学科和社会学细分主题受关注程度的差异,我们运用三学科和社会学主题词的被引次数作为权数做进一步分析。结果显示,研究者对细分主题的关注程度更为分散。由于三学科数据中存在被引次数为0的记录,主题词总数从1864个降为1326个,以被引次数作为权数获得的被引权次为50816权次,每个主题词被引平均为38.32权次,方差为20608.85,中位数为8权次,25%分位数为2权次,75%分位数为26权次。其中,出现50权次以下的1137个,占主题词总数的85.7%。记入被引次数的主题词也呈现幂律分布,满足齐普夫定律。在计入被引次数后,更加接近无标度网络分布,拟合方程为y=5.0101-1.517x,相关系数为R2=0.8859,主题词按权次由高到低排列的权次衰减幂次为-1.52。
运用与多学科分析一致的方法,表4可用于观察社会学细分主题的受关注格局与特点。从表4中可以看出,三学科有着更多的社会性主题,特别关注弱关系、网络结构、小世界、创新性等主题。有意思的是,即使在计入被引次数后,社会学与三学科关注的细分主题结构依然相似。表4显示,三学科和社会学的前10个主题词完全相同。

综合表1到表4的数据,我们观察到社会学与多学科对技术与组织研究细分主题的异同。第一,两者都关注组织的创新、绩效、厂商(形态)、知识。第二,多学科更关注组织因素,社会学则更关注组织中人的因素,如技术与组织中的工作、知识、社会网络、文化、性别等。第三,社会学更关注基础议题,如知识便是工作感受、创新、文化等其他议题的基础;创新性是人类社会发展的源泉;弱关系是人类社会关系体系的基本特征,对社会的多个维度都有重要影响;网络结构是人群特征的基本参数,刻画着组织人群的关系特征,直接影响着组织绩效。
同时,我们也注意到技术与组织的传统主题“组织结构”在文献中并不多见。对此,有研究者认为这是由于20世纪90年代出现了从组织层次的研究转向个体层次的研究的范式转换(Sewell & Phillips,2010)。但本文已经证实,对个体层次的关注早在20世纪中期便已出现,更重要的影响因素则是技术与组织在过去60年的发展。
三、细分主题间关系与理论取向脉络
(一)技术与组织细分主题间关系
为呈现细分主题之间的关系,我们将主题词数据整理为邻接矩阵(巴派特,2014)数据,运用多种网络分析方法(本文称之为“主题网络分析法”),探索细分主题之间的关系结构。
运用多学科数据,我们获得有连接关系的主题词(节点)15220个,形成了204355对关系(边)。用这个邻接矩阵,我们计算了比较容易理解的两个参数:第一,节点度数和边标次(标准化次数),用于探索细分主题之间的关系结构。第二,被引次数最高的前10个节点度数和边权/标次数,如表5所示。

为呈现多学科主题词关系结构的整体格局,用最高权/标次的1/4过滤后获得了图1。在图1两图中,节点大小表示与之有连接节点的多少。连接的节点越多,主题词的直径越大,节点直径的数值为表5的节点度数(第2列)。两个节点之间边的粗细表示关系的强弱。在图1左图中,边表示一对主题词(如“绩效—创新”,简称“主题词对”)的出现次数经标准化后的标次(表5第5列),如“绩效—创新”的标次为110.83;标次数越大,边越粗。在右图中,边表示加权(用出现主题词对文献的被引次数作为权数加权累加)且标准化之后主题词对的权标次(表5第8列),权标次数越大,边越粗,如“创新—厂商”的权数为81.19。需注意的是,边的粗细仅意味着在一个主题词对中至少有一个主题词出现次数多或受关注程度高。

从图1可见,第一,绩效是最受关注的细分主题。左图中连线呈现的是细分主题之间的关系,每一个闭合关系都涉及若干主题词对,如“绩效—创新—管理”等。在多学科文献中,表5第2列的节点度数说明出现次数最多的是绩效;第5列的标次数则显示出现次数最多的主题词对为“绩效—创新”,是被探讨最多的一对关系。不仅如此,左图的可视范围内还有众多的细分主题与绩效关联在一起,如能力、竞争优势、战略等,总计有3476个主题词与之相连,占网络主题词总数的22.8%。
第二,资源相关的主题也受到关注。结合表5可知,“创新—厂商—绩效”构成了一个显而易见的主题结构。一种可能的解读是,人们运用厂商机制进行创新,提高组织绩效。值得注意的是,资源视角的度数为693,只有绩效的19.9%,但是“资源视角—竞争优势”边的权标次却与“知识—创新”的相当,且大于“知识—厂商”。
第三,比较图1左右两图可以看到明显的相同与差异。左图代表了1篇文献1票的格局;右图则显示出部分文献具有更大影响力的格局。两图显示绩效是多学科共同的关注,且创新与绩效紧紧相连。不同的是,左图显示与绩效相关联的因素更多,且更分散;右图显示与绩效相关的因素更少且更集中,譬如“知识—创新—厂商—绩效”模式显得更加清晰。
综合表5和图1可见,在多学科文献中,绩效是因变量,与之关联的自变量非常集中,如创新、厂商、管理、知识等。若把这些主题词串起来可以建构一个命题:运用厂商机制,创新是组织绩效的动力和源泉,知识是让创新获得绩效的条件,管理则是让创新产生绩效的保障。
那么,社会学的细分主题之间又有怎样的关系结构呢?用同样的分析方法获得节点数860个,未加权的边数5538条,加权后的边数4147条。表6列出了社会学文献中度数最大的前10个主题词、标次数和权标次数。

图2的主题词网络结构中,左图没有加权,右图加过权。从图中可见:第一,有些细分主题如工作、知识等,本身很突出,主题之间却关联不大。左图中,结合表6第1、2列的数据可知,工作和知识有着非常接近的连接度数,我们自然认为两者之间有一条标次数较大的边。但事实是,表6第3、4、5列的数据显示,“工作—知识”关系的标次数只有最大标次数的42.8%。反而是“知识—创新”之间有着最大的标次数,排在第2的为“科学—知识”,而科学却是一个度数不大的节点。

第二,主题关联有多个子结构,却没有主结构。右图中,结合表6第6、7、8列的数据,加权后的主题词之间呈现出两个相对清晰的子网络(连通分量)。第一个是围绕知识的子网络,可以看到“知识—绩效—创新”之间的强关系。结合表6也可观察到与知识之间关系很强却度数较小的细分主题,如网络结构、联盟形式、小世界等。第二个是围绕市场的子网络,从中可以看到市场与角色冲突、收入、关系、种族、成就、强度等细分主题之间的关系。
这里再一次显示社会学关注更基础的细分主题,如将知识作为创新的条件,将科学作为知识的来源,而不像多学科那样直接关注组织绩效。将工作与嵌入性、弱关系等相连,将市场与人群的社会特征相连恰好体现了社会学对人的关注,并隐含着如下命题:组织绩效来源于人的因素,其中工作感受通过社会网络影响人的参与,知识影响创新与实施;市场与角色扮演、收入、种族、成就感等密切相关。这些综合起来才会影响组织绩效。
从社会特征出发的细分主题抓住了技术与组织主题的社会基础和前置条件,如果能形成明确的主题关系结构,即在人群因素与绩效的社会最优之间建立直接联系,对技术与组织现象的刻画将更深入,解释也将更有穿透力。社会学在这一领域有着巨大的发展空间。
(二)研究环境的变化与理论取向的发展脉络
在技术与组织研究领域,细分主题的流变是技术与组织各自发展的后果。第二次世界大战之后,对英、美等国工业的发展而言,技术是重要的驱动力,面对的问题也是如何通过技术创新提高生产效率,进而提高组织绩效。对此,伍德沃德的回应提出了两个根本性议题:第一,技术从哪里来?第二,技术与组织如何影响组织绩效?
对第一个问题的探索让技术创新成为与组织绩效同等重要的主题(图1和表4),在组织研究中,甚至是更加重要的主题(Burns & Stalker,1961)。对企业来说,技术创新来自组织内部还是外部?在20世纪50年代,技术创新主要来自组织内部。因此,对组织而言,技术外源性并不凸显。这就意味着,只要企业在技术上有突破,就有机会提高组织绩效。技术复制的低成本特征(Kogut & Zander,1992)使得同一套技术被应用的范围越大,提高组织绩效的机会就越多。跨国公司正是在技术应用范围扩张的驱动下出现和发展的(Wilkins,1974;Dunning,1992)。
这解释了技术与组织的早期研究为什么关注组织结构而不讨论技术来源。正因为技术与组织结构的关系是组织扩张的基础,我们也就可以理解为什么20世纪50-90年代讨论技术与组织的文献并不多,且在技术一侧更多地围绕创新,在组织一侧更多地围绕组织结构了(Harvey,1968)。
可是,从社会学的视角切入,却很容易发现有关技术创新来源的议题被忽略了。社会学在后来的介入中展现了自己的洞见,即知识是创新的来源,也是让创新发生效用的条件,进而把知识带入技术与组织研究领域。为了检验这个判断,我们运用谷歌学术检索主题词“technology and organization”,按照相关性由高到低排序,截取前1000篇/部文献。而后再逐篇/部阅读后进行筛选,留存203篇/部,进一步获取其被引用数据。最后,对文献的理论要素进行编码,获得了过去60年技术与组织研究理论发展的分析框架(见图3)。
在技术与组织研究的早期,技术受到更多的关注。技术中心论(图3第1象限)曾占据主导地位,在后来的发展中,尽管不再是惟一的理论取向,却也始终存在。创新作为技术发展的动力(阿瑟,2014),在20世纪90年代把信息技术推上前台,至少在四个方面改变了技术与组织研究的大背景。第一,技术外源性议题凸显。组织内部的技术创新曾经是技术与组织研究默认的前提,信息技术发展呈现的赢家通吃的局面让其变成了绝大多数组织的外部技术。信息技术的引进和应用意味着技术的外源性。至少在信息技术领域,技术创新与应用开始逐步分离,技术的外源性意义迅速凸显。(接下三)