摘要:针对档案领域的短文本分类,设计一种基于概念网络的自动分类方法。通过分析领域内短文本的语言特点构建领域本体,利用自然语言处理技术将短文本转化为资源描述框架表示的结构化概念网络,在此基础上定义概念网络间的语义相似度,从而实现档案的自动分类。实验结果表明,相比传统基于特征选择的短文本分类方法,该方法的分类错误率下降了24.2%,可有效改善系统性能。
原文链接:http://www.cqvip.com//QK/95200X/201021/35748550.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)