全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
677 0
2017-12-28
摘要:互联网短文本的分类是自然语言处理的一个研究热点。本文提出一种基于卷积神经网络(Convolutional Neural Networks,CNNs)互联网短文本分类方法。首先通过Word2vec的Skip-gram模型获得短文特征,接着送入CNNs中进一步提取高层次特征,最后通过K-max池化操作后放入Softmax分类器得出分类模型。在实验中,该方法和机器学习方法以及DBN方法相比,结果表明本文方法不仅解决了文本向量的维数灾难和局部最优解问题,而且有效地提高了互联网短文本两级分类准确率,证实了基于CNNs的互联网短文本分类的有效性。

原文链接:http://www.cqvip.com//QK/97264X/201704/671782453.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群