全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
611 0
2017-12-28
摘要:I-vector说话人识别系统常用距离来衡量说话人语音间的相似度。加权成对约束度量学习算法(WPCML)利用成对训练样本的加权约束信息训练一个用于计算马氏距离的度量矩阵。该度量矩阵表示的样本空间中,同类样本间的距离更小,非同类样本间的距离更大。在美国国家标准技术局(NIST)2008年说话人识别评测数据库(SRE08)的实验结果表明,WPCML算法训练度量矩阵用于马氏距离相似度打分,比用余弦距离相似度打分的性能更好。选择训练样本对方法用于构造度量学习训练样本集能进一步提高系统实验性能,并优于目前最流行的PLDA分类器。

原文链接:http://www.cqvip.com//QK/91690X/201611/668993519.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群