摘要:脑网络作为复杂网络分析方法在神经影像领域的应用已得到广泛的认可。研究发现脑网络中的节点规模对网络的拓扑属性会产生重要的影响。利用静息态功能影像数据,在5种不同的节点规模下分别完成抑郁症患者和正常对照的脑网络构建,比较了网络拓扑属性的变化,并选择了4种不同的分类算法进行脑疾病分类研究。结果表明,网络节点数量不仅对拓扑属性产生了影响,而且对分类模型的构建也有直接作用。支持向量机(RBF核函数)模型在节点规模为250时,分类效果最好,平均正确率为83.18%。该研究结果在抑郁症的临床诊断中具有重要的应用价值,为基于脑网络的
机器学习分类研究在网络节点规模的选择上提供了重要的参考依据。
原文链接:http://www.cqvip.com//QK/92817X/201607/669639815.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)