全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
523 0
2017-12-28
摘要:由于石油测井数据存在着模糊性和噪声,在数据挖掘中单纯使用粗集方法会受噪声干扰而直接影响分类精度,单纯使用神经网络会因输入信息空间维数较大时使网络结构复杂且训练时间长.为解决这些问题,根据测井解释原理,本文提出一种将两者结合起来的数据挖掘方法,即经过测井资料预处理、样本信息粗集方法简化、神经网络学习训练、待识信息网络识别和误差分析等步骤,其中使用的二层非线性连接权神经网络简化了网络的运算.通过岩性识别和储层参数定量计算两个应用实例,结果表明这种数据挖掘方法在测井解释中其识别率远高于其它单一数据挖掘方法,效果令人满意.

原文链接:http://www.cqvip.com//QK/93243X/200304/8224895.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群