摘要:从海量数据中挖掘有用的信息为高层的决策支持和分析预测服务,已成为网络时代人们对信息系统提出的新的需求,但我们发现数据处理和数据的提炼技术是匮乏的.起源于贝叶斯统计学的贝叶斯网络以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习方法等特性表示了客体的概率分布和因果联系,成为当前数据挖掘众多方法中最为引人注目的焦点之一.本文首先对贝叶斯网络、贝叶斯网络推理和贝叶斯网络学习进行综合性的阐述,然后讨论其在
数据挖掘中的应用和优势.
原文链接:http://www.cqvip.com//QK/87707X/200402/10088646.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)