全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
645 0
2017-12-30
摘要:Web数据中的质量参差不齐、可信度不高以及冗余现象造成了网络信息检索工具存储和运算资源的极大浪费,并直接影响着检索性能的提高.现有的网络数据清理方式并非专门针对网络信息检索的需要,因而存在着较大不足.本文根据对检索用户的查询行为分析,提出了一种利用查询无关特征分析和先验知识学习的方法计算页面成为检索结果页面的概率,从而进行网络数据清理的算法.基于文本信息检索会议标准测试平台的实验结果证明,此算法可以在保留近95%检索结果页面的基础上清理占语料库页面总数45%以上的低质量页面,这意味着使用更少的存储和运算资源获取更高的检索性能将成为可能.

原文链接:http://www.cqvip.com//QK/96983X/200603/21858422.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群