全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
685 0
2017-12-30
摘要:高速发展的微博带来信息富余,也带来了信息过载,不断新增的非结构化微博文本内容和复杂的社会网络关系导致个性化推荐难以实施.针对微博网站特征,提出一种基于信息传播模拟的协同过滤推荐模型并给出推荐框架图,解决推荐的数据稀疏性和冷启动问题.首先,通过自然语言处理技术处理非结构化文本内容,获取关键词为推荐对象,构建用户-关键词偏好模型;然后,采用一阶马尔可夫随机游走模拟用户偏好在社会网络中的传播过程,得到用户-关键词偏好矩阵.实验使用来自新浪微博的数据集,采用平均绝对误差、准确率和召回率三个指标评价推荐模型,并与基准模型进行对比.实验结果表明,因整合了社会网络结构信息,基于信息传播的协同过滤推荐模型的效率比基准模型有明显提高.

原文链接:http://www.cqvip.com//QK/95538X/201505/88847676504849534853484956.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群