全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
529 0
2017-12-31
摘要:针对传统数据挖掘算法在数据量级方面的局限性,提出在粗糙集理论的基础上,采用类分布链表结构改进传统的基于属性重要性的数据离散化算法、属性约简算法以及基于启发式的值约简算法。讨论了基于动态聚类的两步离散化算法,当算法适应大数据处理之后,采用并行计算的方法提高算法的执行效率。算法测试结果表明,改进算法能有效地处理大数据量,同时并行计算解决了大数据量处理带来的效率问题。

原文链接:http://www.cqvip.com//QK/97360A/201607/668344611.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群