摘要:针对传统
数据挖掘算法在数据量级方面的局限性,提出在粗糙集理论的基础上,采用类分布链表结构改进传统的基于属性重要性的数据离散化算法、属性约简算法以及基于启发式的值约简算法。讨论了基于动态聚类的两步离散化算法,当算法适应大数据处理之后,采用并行计算的方法提高算法的执行效率。算法测试结果表明,改进算法能有效地处理大数据量,同时并行计算解决了大数据量处理带来的效率问题。
原文链接:http://www.cqvip.com//QK/97360A/201607/668344611.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)