摘要:研究股票价格变化预测问题,股票价格受多种影响,导致具有突变性、非线性和随机性,单一预测方法只能描述股票价格部分变化规律,预测精度低。为提高股票价格预测精度,提出一种基于
数据挖掘技术的股票价格组合预测模型。根据股票价格变化特点,首先对其线性变化规律进行建模预测,并对非线性变化规律进行建模预测,最后将两种预测结果进行融合,得到股票价格的最终预测结果。仿真结果表明,相对于单一股票价格预测模型,组合预测模型提高了股票价格预测精度,降低了股票价格预测误差,更加全面、准确反映了股票价格的变化规律,是一种有效、高精度的股票价格预测参考手段。
原文链接:http://www.cqvip.com//QK/92897X/201207/42672175.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)