全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
767 0
2018-01-02
摘要:利用2009年12月-2010年5月塑料大棚内外观测的气象数据,构建了基于BP神经网络的杨梅生产大棚内的最高、最低气温预测模型,根据逐时转化系数计算出棚内相应的逐时气温,达到逐时预报大棚内气温的目的。通过模拟回代和对独立试验数据的验证,基于BP神经网络模型对大棚内日最低气温、日最高气温和逐时气温预测值与实际值的回归估计标准误差(RMSE)分别为0.8℃、1.4℃和0.7℃,精度明显高于同时利用逐步回归法建立的模型。该模型所需参数少,实用性强,模拟精度高,可为设施杨梅气象服务和环境调控提供依据。

原文链接:http://www.cqvip.com//QK/92555X/201103/39005381.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群