摘要:提出了一种新的粗糙集双重学习方法,该方法能用遗传算法实现外层学习,用规则提取方法进行内层学习.其基本思想是:首先引入遗传算法,将属性编码,并针对不同的属性组合进行规则提取;然后用测试样本对规则集进行检验,并基于所得到的识别率建立适应度函数;最后在合适的遗传算子下获取最佳的属性组合及相应的知识规则.与其他方法相比,本文所提粗糙集双重学习方法集属性约简和规则提取于一体,整个过程具有很强的自适应能力.最后,用算例对本文方法进行了验证.
原文链接:http://www.cqvip.com//QK/93243X/200802/26980807.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)