全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
509 0
2018-01-04
摘要:为促进学生思考并提高响应速度,提出一种从历史研讨记录中挖掘相关信息的在线问答推荐方法。该方法包括建立技术词汇层次树、提取任务词汇、文本段落划分、特征抽取、主题识别过滤和计算文档得分6个步骤。通过设计两个实验来评估所提出的方法:第一个实验比较TF—IDF、TF—IDF+主题过滤以及TF—IDF+LSA+主题过滤三种推荐方法,结果表明使用TF—IDF+主题过滤的算法可以获得最好的推荐效果;第二个实验将系统用于一个学期的在线课程研讨中,现场评估结果表明,文档推荐系统可以促进学生研讨,并且有较高的感知有用性和易用性。本研究表明,中等相关程度的历史研讨记录可以被自动挖掘出来,并且向学生提供这些信息可以促进学生思考和研讨。

原文链接:http://www.cqvip.com//QK/93371X/201204/41868243.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群