摘要:针对反映转子系统工作状态的特征参数时间序列具有不确定性的、差异较大的分段函数变化规律的特点,提出了一种组合式神经网络转子系统状态预测模型。该模型将故障诊断和状态预测有机地结合起来,利用转子系统当前状态特征参数样本,通过故障诊断系统判断预测时的转子系统工作状态模式;从多种神经网络预测模型组合而成的预测模型库中调用同该工作状态模式相应的
神经网络预测模型,对多种特征参数时间序列进行预测;依据预测出的未来某一时刻的多种特征参数,利用故障诊断系统判断转子系统的未来工作状态模式。仿真试验结果表明,该模型可以对转子系统状态进行可靠的预测。文中详细讨论了模型的建立和仿真实验结果。
原文链接:http://www.cqvip.com//QK/90021X/200101/4944881.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)