全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
509 0
2018-01-06
摘要:Map Reduce is a programming model for processing large data sets,and Hadoop is the most popular open-source implementation of MapReduce.To achieve high performance,up to 190 Hadoop configuration parameters must be manually tunned.This is not only time-consuming but also error-pron.In this paper,we propose a new performance model based on random forest,a recently developed machine-learning algorithm.The model,called RFMS,is used to predict the performance of a Hadoop system according to the system’s configuration parameters.RFMS is created from 2000 distinct fine-grained performance observations with different Hadoop configurations.We test RFMS against the measured performance of representative workloads from the Hadoop Micro-benchmark suite.The results show that the prediction accuracy of RFMS achieves 95% on average and up to 99%.This new,highly accurate prediction model can be used to automatically optimize the performance of Hadoop systems.

原文链接:http://www.cqvip.com//QK/70429X/201302/46536953.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群