全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
496 0
2018-01-07
摘要:提出一种新的基于粗糙集的属性约简算法.该算法采用层次结构和近似精度的概念,约简集中的属性选择从空集开始,用启发函数ξ作为选择条件属性的衡量标准,逐步加入相对于决策而言重要的条件属性,并采用下近似值作为剪枝依据,逐步删除给定论域U中根据该属性子集能完全正确分类的对象,减小了属性约简过程中的搜索空间,处理过程是递归的,直到给定论域U为空集,保证了在分类精度不变的情况下,获得简化的属性集,最后运用粗糙集中正域的概念,约简冗余的属性值并求出其最简规则.对UCI机器学习数据库中7个数据库属性约简结果证明了该算法的正确性和可行性.

原文链接:http://www.cqvip.com//QK/90344A/200508/18079620.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群