摘要:支持向量机(SVM)是20世纪90年代初由Vapnik等人提出的一类新型机器学习方法,此方法能够在训练样本很少的情况下达到很好的分类推广能力。文章应用SVM算法对车牌中的汉字字符进行识别,在无字符特征提取的情况下可得到较高的识别率和识别速度。通过与无字符特征提取的BP网络识别系统比较表明,在小样本的情况下,该方法的识别率远优于神经网络,并避免了
神经网络的局部极值等的问题。
原文链接:http://www.cqvip.com//QK/91690X/200424/10114726.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)