全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
692 0
2018-01-08
摘要:利用机器学习算法,如SVM、神经网络等,进行入侵检测已取得很大进展,但检测结果难于理解的问题已影响到这些检测算法的广泛使用.文章在对已知的关联算法进行比较分析的基础上,提出了一种针对入侵检测结果的实时规则在线生成方法,以提高对检测结果的理解,降低入侵所带来的损失.在定义局部支持度、全局可信度、CI—Tree和IX—Tree树结构的基础上,设计了直接产生仅与当前发生的攻击相关的规则集的规则生成算法.该方法解决了当前主流关联规则生成算法应用到入侵检测结果集的过程中所存在的多遍扫描(至少两遍)、攻击数据的非均衡分布所带来的大量无效规则的产生和两阶段规则生成方法使得在第一阶段产生了众多与最后生成的规则集无关的频繁集等问题.经过实验表明,文中所提出的方法在规则生成和时间效率方面都显示出了良好的性能.

原文链接:http://www.cqvip.com//QK/90818X/200609/22809407.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群