摘要:使用机器学习中的随机森林(RF)回归算法构建小麦叶片SPAD值遥感反演模型。以2010—2013年江苏地区试验点稻茬小麦3个生育期(拔节、孕穗、开花)的叶片为材料,结合我国自主研发的环境减灾卫星HJ-1对研究区域进行同步监测,分析了各生育期叶片SPAD值与8种植被指数间的相关性;以0.01水平下显著相关的植被指数作为输入参数,使用RF回归算法构建了每个生育期的小麦SPAD反演算法模型,即RF-SPAD模型,以支持向量回归(SVR)和反向传播(BP)
神经网络算法构建的SVR-SPAD模型和BP-SPAD模型作为比较模型,以R2和均方根误差(RMSE)为指标,分析了每个生育期3个模型的学习能力和回归预测能力,结果表明:RF-SPAD模型在3个生育期都表现出最强的学习能力,R2和RMSE在拔节期分别为0.89和1.54,孕穗期分别为0.85和1.49,开花期分别为0.80和1.71;RF-SPAD模型在3个生育期的回归预测能力都高于BP-SPAD模型,高于或接近于SVR-SPAD模型,R2和RMSE在拔节期分别为0.55和2.11,孕穗期分别为0.72和2.20,开花期分别为0.60和3.16。
原文链接:http://www.cqvip.com//QK/90304X/201501/663579769.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)