全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
517 0
2018-01-10
摘要:为了有效提高前向神经网络的学习性能,需要从一个新的角度考虑神经网络的学习训练.基于此,提出了一种基于结果反馈的新算法--FBBP算法.将神经网络输入调整与通常的权值调整的反向传播算法结合起来,通过调整权值和输入矢量值的双重作用来最小化神经网络的误差函数.并通过几个函数逼近和模式分类问题的实例仿真,将FBBP算法与加动量项BP算法、最新的一种加快收敛的权值更新的算法进行了比较,来验证所提出的算法的有效性.实验结果表明,所提出的算法具有训练速度快和泛化能力高的双重优点,是一种非常有效的学习方法.

原文链接:http://www.cqvip.com//QK/94913X/200409/10401237.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群