摘要:为了有效提高前向神经网络的学习性能,需要从一个新的角度考虑神经网络的学习训练.基于此,提出了一种基于结果反馈的新算法--FBBP算法.将神经网络输入调整与通常的权值调整的反向传播算法结合起来,通过调整权值和输入矢量值的双重作用来最小化
神经网络的误差函数.并通过几个函数逼近和模式分类问题的实例仿真,将FBBP算法与加动量项BP算法、最新的一种加快收敛的权值更新的算法进行了比较,来验证所提出的算法的有效性.实验结果表明,所提出的算法具有训练速度快和泛化能力高的双重优点,是一种非常有效的学习方法.
原文链接:http://www.cqvip.com//QK/94913X/200409/10401237.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)