全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
610 0
2018-01-10
摘要:利用SAS软件对GEO的一个肺癌芯片实验进行挖掘.采用非参数检验,判别分析和回归分析对该芯片实验中14个核受体的表达信息进行分析.结果表明,在0.05显著性水平下,ER1、VDR、 RARα和 RORα四个基因在腺癌和鳞癌表达具有统计学差异;RARβ在复发组和非复发组表达有差异.判别分析结果显示VDR和RORα表达量可以对病理类型进行预测,但是总误判率很高(0.238 9);RARβ和PPARα对判别是否复发的总误判率更高(0.345 7).建立回归方程预测病理类型,入选模型的变量也是VDR和RORα,两者OR分别为0.126和4.452.可见,基于SAS的多元统计方法是芯片数据挖掘的一种潜在方法,一旦芯片实验标准化,利用SAS对不同芯片实验数据整合分析的结论将有益于推动假说形成.

原文链接:http://www.cqvip.com//QK/87988X/201002/34134049.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群