摘要:用支持向量机SVM进行分类时,针对在某些机器学习中,存在训练样本获取代价过大,且训练样本中类的数量不对称的问题,提出了基于主动学习策略的加权支持向量机。其在
机器学习的进程中,每次从候选样本集中,主动选择最有利于改善分类器性能的n个新样本添加到训练样本中进行学习,引入类权重因子和样本权重因子,将惩罚参数与类权重因子和样本权重因子联系。实验结果表明,该方法能够有效减少训练样本数量,解决类的数量不对称的样本产生的最优分界面偏移的问题,使分类器获得较好的分类性能。
原文链接:http://www.cqvip.com//QK/95033X/200904/29565686.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)