摘要:针对互联网语料中的未登录词问题,提出一种基于无监督学习的中文分词改进算法.使用基准分词器对未标注的语料进行分词,选择适合于未登录词发现的模型进行无监督训练得到词向量,并使用词向量结果贪心地发现未登录词,修正分词结果.在传统中文语料上与互联网语料上,比较了基于字典的字符串匹配模型与基于字符标注的
机器学习模型的分词效果.实验结果表明,改进算法可以提升中文分词效果,在互联网语料上的提升效果尤为明显.改进算法在PKU语料上取得了最多1.1%的F值提升,在MSR语料上取得了最多1.2%的F值提升,在互联网语料上取得了最多5%的F值提升.
原文链接:http://www.cqvip.com//QK/95659X/201704/671704483.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)