摘要:为了改善现有支持向量机(SupportVectorMachine)的
机器学习效果依赖于参数选择,而参数选择通常依赖于经验的问题,在现有基础上,本文结合一种称为骨架人工蜂群算法(Bare-bonesArtificialBeeColony)的改进的人工蜂群算法对支持向量机的2个参数进行优化,并对该优化结果进行试验。试验结果表明,改进的支持向量机的准确率、识别速度均优于原本的支持向量机。
原文链接:http://www.cqvip.com//QK/91421X/201705/7000186819.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)