全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
424 0
2018-01-12
摘要:目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任务的方法,该方法可以自动学习特征,并有效建模长距离依赖信息,但是该模型较为复杂,存在模型训练和预测时间长的缺陷.针对该问题,提出了基于门循环单元(gated recurrent unit,GRU)神经网络的中文分词法,该方法继承了LSTM模型可自动学习特征、能有效建立长距离依赖信息的优点,具有与基于LSTM神经网络中文分词法相当的性能,并在速度上有显著提升.

原文链接:http://www.cqvip.com//QK/95448X/201702/671628784.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群