摘要:音乐流派识别(music genre recognition,简称MGR)是一项应用前景广阔的研究领域,同时也能够为音乐机器学习技术提供一个良好的测试台.在过去几年中,涌现出了大量基于机器学习的MGR系统.然而,单纯依靠底层声学特征的MGR算法在分类时往往不能得到令人满意的结果.作者受到语境化
机器学习技术的启发,提出了基于堆叠泛化的MGR分类系统.该系统通过提取互联网中用户标注音乐时使用的标签,同时融合声学特征完成语境化音乐流派识别.在论文中,MGR系统分为内容层和语境层,内容层由提取Mel倒谱系数(Mel frequency cepstrum coefficient,简称MFCC)和快速傅里叶变换(fast Fourier transformation,简称FFT)特征的声学特征表示,语境层由额外标签表示.在数据集GTZAN的实验结果表明,在数据集GTZAN下,语境化的MGR分类准确率远高于基于声学特征的MGR分类准确率,实现了20%的分类性能的提升.
原文链接:http://www.cqvip.com//QK/95101X/201703/672091471.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)