摘要:排序学习是机器学习与信息检索相互结合的研究领域,它利用
机器学习的方法自动调节参数、综合多种排序特征、同时可以避免过拟合,进而得到新的排序模型用于排序被检索的文档.在排序学习方法中,Listwise方法的排序效果相对较好,但是目前已有的属于此类学习算法也有很多缺点:由于是基于列表所有的置换进行训练,时间复杂度太高;其损失函数并未充分利用极其重要的排序位置信息.本文基于此提出了新的学习算法,引入了位置信息损失因子,构建了新的损失函数,同时使用了效率更高的训练方法.最后在LETOR4.0数据集上的实验结果表明,新学习算法的排序性能得到了较为明显的提升.
原文链接:http://www.cqvip.com//QK/95659X/201701/671073324.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)