全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
693 0
2018-01-13
摘要:为提高网络入侵检测的检测效果,提出一种基于改进蚁群算法与遗传算法组合的网络入侵检测方法。该方法采用遗传算法(genetic algorithm,GA)对网络入侵的特征集进行快速选取,为后续特征提取打下基础;对传统蚁群算法(ant colony optimization,ACO)的节点选择策略和信息素更新策略进行改进,提出一种改进的蚁群算法,提高对最优特征的选择效果,采用改进的蚁群算法对特征进一步选择;采用支持向量机(support vector machine,SVM)统计机器学习方法建立各类网络入侵的检测分类器。仿真实验结果表明,新的网络入侵检测方法综合GA和改进蚁群算法的优势,能够获得更好的入侵特征,从检测正确率、误报率和漏报率3个方面综合比较,新的网络入侵检测方法具有更好的网络入侵检测效果,且提高了检测速率。

原文链接:http://www.cqvip.com//QK/96514A/201701/671275869.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群