全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
574 0
2018-01-14
摘要:针对快速K-me doids聚类算法所选初始聚类中心可能位于同一类簇的缺陷,以及基于粒计算的K-medoids算法构造样本去模糊相似矩阵时需要主观给定阈值的缺陷,提出了粒计算优化初始聚类中心的K-medoids聚类算法。该算法结合粒计算与最大最小距离法,优化K-medoids算法初始聚类中心的选取,选择处于样本分布密集区域且相距较远的K个样本作为初始聚类中心;使用所有样本的相似度均值作为其构造去模糊相似矩阵的阈值。人工模拟数据集和UCI机器学习数据库数据集的实验测试表明,新K-medoids聚类算法具有更稳定的聚类效果,其准确率和Adjusted Rand Index等聚类结果评价指标值优于传统K-medoids聚类算法、快速K-medoids聚类算法和基于粒计算的K-medoids聚类算法。

原文链接:http://www.cqvip.com//QK/93336B/201505/664612290.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群