摘要:癫痫是一种常见的以反复癫痫性发作为特征的慢性神经系统疾病。癫痫性发作的自动检测是通过机器学习及
数据挖掘等方法对癫痫发作脑电自动识别的一种技术。如何设计合适的脑电特征提取方法是有效完成癫痫性发作自动检测的关键所在。文中系统总结了用于癫痫性发作自动检测的脑电特征提取方法,分别从时域分析、频域分析、时频分析、非线性动力学、图论、癫痫计算模型6个方面将已有的癫痫脑电特征提取方法进行归类,并对每类方法的基本原理和设计思想进行了系统的阐述。
原文链接:http://www.cqvip.com//QK/95035X/201606/670834865.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)