摘要:近年来越来越多的机器学习算法被应用到入侵检测中.但是在网络入侵检测系统(NIDS)中,随着网络规模和速度的增加,一般机器学习算法难以满足入侵检测系统实时性的要求,这也是困扰
机器学习算法在入侵检测领域进一步实用化的主要瓶颈之一.为了增加网络入侵检测系统的可用性和实时性,提出了一种基于自组织特征映射(SOFM)的网络入侵检测系统,并且在此基础上实现了一种面向提高入侵检测效率的快速最近邻搜索算法VENNS,以减少系统训练和系统检测时间开销.在DARPA1999入侵检测评估数据的基础上,进行了系统的综合性能评价和对比分析.实验证明,系统在维持较低误报率的基础上取得较高的检测率;系统效率大大提高:训练时间开销大约达到改进前的1/4,检测时间开销则约达到改进前的1/7.
原文链接:http://www.cqvip.com//QK/94913X/200509/20163899.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)