全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
757 0
2018-01-16
摘要:针对极端学习机(ELM)网络规模控制问题,从剪枝思路出发,提出了一种基于影响度剪枝的ELM分类算法。利用ELM网络单个隐节点连接输入层和输出层的权值向量、该隐节点的输出、初始隐节点个数以及训练样本个数,定义单个隐节点相对于整个网络学习的影响度,根据影响度判断隐节点的重要性并将其排序,采用与ELM网络规模相匹配的剪枝步长删除冗余节点,最后更新隐含层与输入层和输出层连接的权值向量。通过对多个UCI机器学习数据集进行分类实验,并将提出的算法与EM-ELM、PELM和ELM算法相比较,结果表明,该算法具有较高的稳定性和测试精度,训练速度较快,并能有效地控制网络规模。

原文链接:http://www.cqvip.com//QK/94293X/201604/668551078.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群