全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
551 0
2018-01-16
摘要:传统的批处理机器学习方法在面对大规模网络流量分类问题时存在分类器训练速度慢、计算复杂度高的缺陷。近年来迅速发展的在线学习方法是解决大规模问题的有效途径。本文针对高速骨干网上的大规模网络流量分类问题,提出了一个基于在线学习的分类框架,并应用了8种在线学习算法。在真实数据集上的实验表明,在分类精度相当的情况下,在线学习算法与支持向量机(SVM)相比空间开销小、模型训练时间显著缩短。同时,为了考察网络流量中样本顺序对分类效果的影响,本文对比了样本按时序处理与随机处理两种方式的差异,验证了网络流量样本存在着时序上的相关性。

原文链接:http://www.cqvip.com//QK/92035A/201603/669163199.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群