摘要:支持向量机是一种基于统计学习理论的新型
机器学习算法,它通过求解最优化问题,在高维空间中寻找最优分类超平面,从而解决复杂数据的分类、回归问题.文中介绍了支持向量机的基本算法原理及其分类方法,重点研究将核函数引入不可分的情形.本文通过改变核函数的参数,采用对比实验来比较分类精度,同时根据Mercer条件形成新的线性组合核函数,最后得出通过改变核函数参数与线性组合核函数的方法可以明显提高分类的精度.
原文链接:http://www.cqvip.com//QK/96579A/201204/42887796.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)