摘要:机器算法中存在许多不同类型和方式的运行模式,而在诸多算法之中,集成学习的算法是一种基于统计理论以计算机实现的良好
机器学习方法.阐述了集成学习的基本思想和实现步骤,运用Bagging集成学习算法试图建立一个个人信用评估模型,以期取得更好的预测结果.运用信息增益法筛选指标,采用V折交叉确认法,利用UCI的信用数据对单个分类器、Bagging集成分类器模型的分类精度和稳健性进行试验比较.结果表明,Bagging-决策树有效的提高了样本的精确性,在个人信用评估的分析中占有较强的优势.
原文链接:http://www.cqvip.com//QK/93074X/201608/668818103.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)