全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
441 0
2018-01-18
摘要:选取2003年3月1日至2008年12月31日20时的逐日ECMWF(欧洲中期天气预报中心)数值预报产品实况格点资料,使用差分法、天气诊断、因子组合等方法,构造出能反映本地天气动力学特征的预报因子库,采用PRESS(预测平方和)准则初选因子,逐步回归复选因子,最优子集回归精选因子,建立分月、分站点逐日最高、最低温度BP神经网络预报模型。模型业务试用结果表明:该BP神经网络预报模型具有较强的非线性处理能力,能较好地反映日极端温度的变化,0~120 h内的最高、最低温度平均预报准确率达较高水平,且对明显的升降温过程反应灵敏,升降温趋势和幅度预报较为准确,为0~120 h的城镇精细化温度预报提供了重要的技术支撑,同时也为ECMWF数值预报产品在温度的释用提供了一种好的思路和方法。

原文链接:http://www.cqvip.com//QK/95348X/201005/34052794.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群