摘要:采用BP网络的三种改进算法,对洞庭湖桂花园8年(1995年~2002年)的氨氮浓度和其影响因子实测资料进行分析,建立了基于BP
神经网络的氨氮浓度预测模型,并对三种改进算法的训练结果进行了比较。结果表明:作为数据驱动型模型的BP网络,用来建模的学习样本质量至关重要,可以直接影响网络的预测精度。1995年~2002年的丰水期(9月份)数据分布比较均匀,能让网络对样本充分学习,与传统的统计建模方法相比,预测精度较高,能较好地反映洞庭湖氨氮浓度与其影响因子之间变化规律。
原文链接:http://www.cqvip.com//QK/97015A/200601/20913993.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)