全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
528 0
2018-01-19
摘要:根据中国水利部推荐的地表水富营养化控制标准,以叶绿素a、总磷、总氮、化学需氧量和透明度为评价指标,采用线性插值方法生成均匀分布的训练样本,建立了用于湖泊、水库富营养化综合评价的神经网络简单集成模型,其个体网络采用反向传播网络。通过递增法分别确定个体网络隐含层节点数为3,集成规模为40。所有个体网络均采用弹性反传训练算法和带动量的梯度下降学习算法。将该模型应用于巢湖富营养化综合评价,结果表明该模型有效消除了单个反向传播神经网络对初始网络权重的敏感性,泛化能力得到显著的提高。该模型的评价结果与综合营养状态指数法差异极显著,而与插值评分法差异不显著;但相关性较高,相关系数分别为0.9406和0.8891。通过对比分析,表明该模型较好地归纳了评价标准中的潜在评价规则,评价结果客观、可靠。

原文链接:http://www.cqvip.com//QK/90772X/200702/23946013.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群