全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
524 0
2018-01-19
摘要:针对对海量数据库中的大数据进行优化挖掘,可以提高数据特征的提取和检测能力.传统方法采用模糊C均值聚类的数据挖掘算法,当数据在层次聚类过程中空间特征的相似度差异性较小时,数据挖掘的准确度不高.提出一种基于粒子群混沌差分训练对模糊C均值聚类算法进行改进,建立数据挖掘优化模型.首先提出了数据聚类据挖掘模型的总体构架,采用非线性时间序列分析方法进行数据信息流拟合,对数据信息流进行高阶累积量特征提取,采用粒子群混沌差分训练实现模糊C均值聚类算法改进.以改进的模糊聚类算法对提取的高阶累积量特征进行聚类分析,以分析结果为依据对数据挖掘模型进行优化.仿真结果表明,该数据挖掘模型能有效实现海量数据的优化聚类和特征提取,数据挖掘的精度较高,性能较好,避免挖掘过程陷入局部收敛.

原文链接:http://www.cqvip.com//QK/86745X/201602/669863042.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群