全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
577 0
2018-01-22
摘要:支持向量机是一项机器学习技术,发展至今近10年了,已经成功地用于模式识别、回归估计以及聚类等,并由此衍生出了核方法。支持向量机由核函数与训练集完全刻画。进一步提高支持向量机性能的关键,是针对给定的问题设计恰当的核函数,这就要求对核函数本身有深刻了解。本文首先分析了核函数的一些重要性质,接着对3类核函数,即平移不变核函数、旋转不变核函数和卷积核,提出了简单实用的判别准则。在此基础上,验证和构造了很多重要核函数。

原文链接:http://www.cqvip.com//QK/92817X/200606/22086590.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群