全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
472 0
2018-01-23
摘要:在遥感影像自动分类中仅使用光谱特征很难产生正确的分类,OLI影像是波段数较多的多光谱影像,如果增加纹理、几何等多种特征以提高分类精度,就会使得特征的维度很高.支持向量机善于解决小样本、非线性和高维的影像分类问题,但是核函数和参数的设置只能依靠实验来获得.文中在OLI影像中提取了23个特征,逐个测试核函数和参数值对分类结果的影响.研究的主要结论如下:RBF核的支持向量机分类精度最高,Sigmoid核支持向量机分类精度最低;核函数的选择对分类精度的影响最大;核函数和参数值的变化不会影响重要特征的使用,3种核的支持向量机分类所使用的重要特征基本一致.

原文链接:http://www.cqvip.com//QK/98521X/201406/663185306.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群