全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
779 0
2018-01-23
摘要:核方法具有坚实的理论基础和广泛的应用,已引起了各领域的关注.基于核的机器学习方法不仅适用于以特征向量表示的模式,也适用于结构化数据的模式.前者对应的是向量核方法,后者对应的是图核方法.图核对结构化数据具有强大而灵活的表示形式,其不仅能描述研究对象或模式的特性,还能反映构成这个物体不同部分之间的结构信息.目前,基于图核的机器学习方法在模式识别、机器学习、机器视觉、数据挖掘等相关研究领域得到了极为广泛的关注与应用,已成为结构数据描述方法和应用领域的一个重要研究方向.论文从使用最为广泛的基于R-convolution的图核谈起,总结了图核研究的意义,着重回顾和讨论图核函数的基本理论、基本分类、国内外研究现状,并进一步指出图核研究的发展方向.

原文链接:http://www.cqvip.com//QK/95101X/201701/671073704.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群