摘要:深度学习在自然语言处理中的应用越来越广泛。相比于传统的n-gram统计语言模型,循环
神经网络(Recurrent Neural Network,RNN)建模技术在语言模型建模方面表现出了极大的优越性,逐渐在语音识别、机器翻译等领域中得到应用。然而,目前RNN语言模型的训练大多是离线的,对于不同的语音识别任务,训练语料与识别任务之间存在着语言差异,使语音识别系统的识别率受到影响。在采用RNN建模技术训练汉语语言模型的同时,提出一种在线RNN模型自适应(self-adaption)算法,将语音信号初步识别结果作为语料继续训练模型,使自适应后的RNN模型与识别任务之间获得最大程度的匹配。实验结果表明:自适应模型有效地减少了语言模型与识别任务之间的语言差异,对汉语词混淆网络进行重打分后,系统识别率得到进一步提升,并在实际汉语语音识别系统中得到了验证。
原文链接:http://www.cqvip.com//QK/91376X/201605/668777727.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)