摘要:基于流的特征并使用
机器学习技术进行网络流量分类是目前网络流量分类的主流技术。由于许多流的特征可用于流分类,其中有许多是不相关和冗余的特征,因此特征选择对算法性能的优化具有重要的作用。将基于过滤的特征选择方法应用于C4.5、Bayesnet、NBD、NBK等分类算法,实验结果表明该方法在无损于分类准确性的同时能够改进计算性能。
原文链接:http://www.cqvip.com//QK/95200X/201016/34905510.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)