摘要:监督学习在模式分类中是一种常见的学习方式,它需要利用带标签的样本来调整分类器的参数才能够实现正确的分类。但在实际应用中,带标签训练样本的获取可能会受到较大地限制,有时甚至不易获取。因此,只需要无类标样本的无监督学习方式逐渐成为研究的热点。本文结合Hebb学习理论和主分量分析,采用
机器学习中的无监督学习方式实现了数字图像的高效压缩。实验结果表明,文中算法能够较好地实现数字图像的压缩,具有一定的实际应用价值。
原文链接:http://www.cqvip.com//QK/97497A/201602/668615658.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)