全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
563 0
2018-01-24
摘要:恶意网络行为已经成为目前移动用户端的主要安全威胁之一,如何有效检测出导致恶意网络行为的恶意网络数据是当前网络安全领域重要的研究课题。在众多的恶意网络行为当中,其中有一类是基于不平衡流量的,正确分类数据包内少数的恶意流量数据对于控制恶意网络行为是具有重要的现实意义的。目前针对数据分类的方法大多都是基于类平衡问题的,然而导致恶意网络行为的恶意数据流量在整个数据包中只占了很少一部分,如何在保证数据整体分类性能比较高的前提下,尽可能的检测出数据包内少量的恶意数据是非常关键的。本文针对此问题,研究了关于检测恶意网络行为的相关理论和技术,从数据角度和算法角度分别采用了类平衡、重取样等预处理方法和不同的集成算法处理导致恶意网络行为的不平衡流量数据样本,在实验的基础上分析比较了各种方法的处理结果,通过研究取得一定的研究成果,最终得出了基于代价敏感的C4.5决策树算法是检测基于非平衡流量的恶意网络行为比较好的方法。

原文链接:http://www.cqvip.com//QK/98089A/201608/669894388.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群